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A dependent bundles model for estimating 
stress concentrations in fibre-matrix 
composites 

L. C. W O L S T E N H O L M E  
Department of Actuarial Science and Statistics, City University, Northampton Square, 
London ECIV OHB, UK 

This paper pursues the interest in characterizing stress concentrations in composites for the 
purpose of providing more reliable input into statistical theories about composite strength. 
A previous paper estimated stress concentration parameters in a fibre-matrix composite by 
numerical maximum likelihood, using the chain of bundles model of Harlow and Phoenix. An 
assumption of the model is that bundles are independent. Here, a model is proposed which 
allows for a dependence across bundles, usually due to the extent to which a fibre becomes 
unstressed in the region of a break. The model is demonstrated using experimental data on a 
carbon-epoxy hybrid composite, and arrays of tungsten-cored silicon carbide fibres embedded 
in resin. It is shown, via the method of maximum likelihood, how inferences may be made 
about stress concentrations and also parameters describing single fibre strength. 

1. I n t r o d u c t i o n  
This paper develops the ideas put forward previouslj~ 
[1]. The basic descriptions of models are the same, but 
the procedure here is different and a greater gen- 
eralization is made. Wolstenholme and Smith [1] 
describe how the whole process of failure, rather than 
just the final strength, of a uniaxial composite may be 
modelled. Experimental data giving the positions and 
applied loads at which individual fibre failures occur 
may then yield numerical estimates of parameters 
describing the stress concentrations induced in those 
unfailed fibres which are close to failed fibres. Of 
particular interest is how the stress concentrations 
vary with inter-fibre spacing. The chain-of-bundles 
model [2-5] was used to describe the composite and 
shown to be effective in the estimation procedure, 
provided the approximation imposed by assuming 
sub-bundles to be independent is not too great a 
departure from the true situation. This depends 
largely on the length of fibre unstressed either side of 
a break being fairly small. This, in turn, creates over- 
stressing in an equivalent length, the positively affec- 
ted length (PAL), in neighbouring unbroken fibre 
segments. If the PAL is reasonably confined to one 
sub-bundle, then the dependency of sub-bundles is 
fairly small. However, it was shown in [1] that for 
some data, the choice of sub-bundle size can be very 
influential. 

An alternative model is proposed here which effect- 
ively allows for dependence across sub-bundles when, 
in addition to the points of fibre failure being known, 
the length of consequent unstressed fibre around each 
break is also specified. The model was motivated by 
observations from a composite constructed from 
tungsten-cored silicon carbide fibres embedded in a 

flexibilized resin. When these fibres break, a release of 
energy sends a shock wave along the length of a fibre 
and results in sometimes quite considerable lengths 
either side of the break being multiply fractured and, 
therefore, unstressed (Fig. 1). 

2. A "dependent bundles" model 
2.1. Description 
Suppose we have N parallel fibres each L "units" long. 
Consider each unit length of fibre to be an "element" 
whose strength is described by a Weibull distribution 
with shape and characteristic stress parameters as for 
unit length fibres. 

The failure process may be described as a sequence 
of "events", where each event is an individual fibre 
break and the associated unstressing of a length of 
fibre either side of the break. Here, a fibre break will be 
called primary failure, and consequential unstressing, 
secondary failure. 

The "status" of the N x L fibre elements at any 
point in the failure process can be described as stressed 
or unstressed and indicated by 1 or 0 entered in an 
N x L matrix. When an element is adjacent to un- 
stressed elements in neighbouring fibres, it will be 
subject to an enhanced loading characterized, for 
example, by a stress concentration factor k = 1 + u(r), 
where u(r) is a function of r, the number of unstressed 
elements which are "adjacent", in the sub-bundle 
sense. When the applied stress is x, the fibre experi- 
ences stress kx. 

The joint probability, or likelihood function, for the 
given set of events may be obtained. When the ith 
break occurs at stress x i, a contribution to the likeli- 
hood function must be calculated from all elements 
which were unfailed immediately prior to the ith break 
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Figure 1 Schematic representation of multiply fractured fibre and 
resulting stress distribution. 
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Figure 2 An example of the "dependent bundles" model and associ- 
ated status matrix. 

and also the density associated with the failing ele- 
ment. In the light of the recorded primary and sec- 
ondary failure of certain elements, the status matrix 
is then adjusted, and the stress-concentration factors 
of surviving elements adjusted. An example of the 
"dependent bundles" model and associated status 
matrix is shown in Fig. 2, where u(r) has been taken 
as r~/F, F being a load,sharing parameter, following 
Bader and Pitkethly [6]. 

2.2. Mathematical details 
Let T (") = {tl,"}} = status matrix, and Kt")= ~k!").t I l , J )  

= stress concentration factor matrix at the nth break. 
Let f ( x ) ,  F ( x ) =  Weibull density and distribution 

functions for the strength of unit length fibres, 
G {") = {9~,"}} = matrix of element likelihoods after n 
breaks, and m = total number of breaks. 

Initially ti, i = ki, j = 1 for all i, j. Let the stress at 
which the first break occurs be x~. Then , m  for all ~ i , j  

elements, except that where the break occurred, is the 
probability that a unit element survives stress x 1 . This 
probability is 1 - F(x~) ,  or equivalently S(xl), where 
S(.) is the survivor function. When an element has 
failed at a known stress x, the probability is given by 
h ( x ) S ( x ) d x  = f ( x ) d x ,  where h(.) is the hazard function. 
The differential dx is not a function of unknown 
parameters and will be omitted for the moment. So 
for the element containing the first break at stress xt ,  
g(.q = f(xl) .  t ,3 

The contribution to the likelihood function is then 
II ~(~) but it is more convenient to deal with the log- . . ~ i , j  
t , J  

likelihood function, .~. log(9~)). 
~,J 
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In general, at the nth break, at stress x,, in the bth 
element of the rth fibre 

= (1 )  t ,J  t ,J  , , 

except 
g(,) (n) (n) ( n -  1) b,, = Sb , , f ( sb , ,X , ) /S ( sb , ,  X , - t )  (2) 

and the contribution to the log-likelihood function is 

.~.t (n) lno(~(n) 
i , j  v ~ t ~ i , j ) "  

t , j  

In practice, a fibre element's total contribution can 
be calculated when the element has primary failure, 
secondary failure or survived the maximum applied 
stress. 

Define G to be the matrix of element total likeli- 
hoods, then for 

(a) primary failed elements 

= k(n) f ( k  (n)Y ] gi,j . - i j J  , . - i j - , ,  (3) 

(b) secondary failed elements 

gl, j = S(kl",}x,) (4) 

(c) surviving elements 

gl, j  = S ( k l ~ x m a x )  (5) 

where Xma x is the maximum applied stress. The overall 
log-likelihood 

logL(0; x )  = .~. log(g,,j) (6) 
z,J 

and may be maximized numerically with respect to 
unknown parameters 0. 

2.3.  A s s u m p t i o n s  
The analysis implicitly assumes that the strength 
distribution of unit length fibres may be defined, for 
whatever we may choose a "unit" to mean. This is also 
true for the chain-of-bundles model, and inherent in 
both is that the principle of weak-link scaling applies, 
and hence the reliance to a large extent on the Weibull 
distribution. Strength testing fibres of length 1 mm or 
less is extremely difficult, so invariably predictions are 
made from tests at longer lengths. Alternatively, we 
can, given enough computing time, estimate the unit 
length parameters by including them in the vector of 
unknown parameters 0. 

The assumption that load redistribution is uniform, 
on a sub-bundle basis, is a slight approximation, but 
the model is versatile enough to allow stress concen- 
tration factors to be not only a function of r, but also, 
for example, distance from a primary failure point. So 
far, a "local" load-sharing rule has been assumed, but 
there is no reason why other rules should not be used, 
if thought appropriate. 

2.4. More  t han  one  failure at a given stress  
The model as described has not taken account of the 
possibility that more than one failure may be recorded 
at any given stress. Such simultaneous failures may be 
regarded as independent provided their regions of 
secondary failure do not overlap. Dependency will, 
in fact, only be possible when the region of overlap 



contains at least one of the primary failures. A proced- 
ure has been devised which automatically sorts out the 
dependence by monitoring changes in load-scaling 
factors, and will be discussed later. First, though, it 
needs to be clear how to treat elements involved in 
simultaneous or group failure. This will involve sums 
and products of probabilities, and a 9~,j cannot be 
simply defined for all i,j involved. The procedure 
adopted is to calculate the joint probability for all 
elements involved in the group failure and assign this 
probability to just one of the g~,~ and set all the othel 
g~,~ = 1.0. 

2.5. Dependen t  failure probabilities 
Consider two neighbouring fibres with breaks 
occurring at the same stress, x (Fig. 3). It  will be 
assumed that the combined failure is initiated by one 
or other of the two breaks. Let element j in fibre i have 
stress concentration factor, kl,;, and denote by k'~,j 
the new factor as a result of the other fibre failing first. 
Let the order of failure be fibre 1 then fibre 2. Then 
contributions to the joint probability for elements 4, 5 
and 6 in fibre 1 are 

al.,, 

al, s 

and 

In fibre 
by the 
a2, S - - - -  S(k2, 8 X). 

= S ( k , , g x  ) (7)  

= kl, s f (k l ,~x  ) (8) 

a l ,  6 = S ( k l , 6 x  ) (9)  

2 elements 7 and 8 are both unaffected 
failure of fibre 1, so aa, v = S(kz, Tx) and 

Calculation of the probability contributions for 
elements 5 and 6 is based on knowing that the break in 
element 6 occurs somewhere between s t r e s s  k2, 6 x and 
k~, 6 x. The probability of failing between these two 
stresses is 

S(k2 ,6x  ) -- 8(k~2,6 X) = a2 ,  6 (10 )  

The exact failure stress is not known which poses the 
question of how to define a suitable survival pro- 
bability for the secondary failed element 5 (Fig. 4). 

If  element 6 fails at stress y, and element 5 is under 
stress z at the time, then it is desirable to be able to 
define z in terms of y. The term a2, s is then given by 
S(z). A similar set of probabilities, bi, j say, is required 
for the order of failure 2 then 1, so the total likelihood 
contribution for the seven elements involved is 

6 8 6 8 

~] a,,j H a2,j + I~ b,,j H b2,j 
j - d -  j = 5  j = 4  j = 5  

6 8 

= I ]  g, , j  }-I (11) 
j = 4  j = 5  
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Figure 4 Changes in load concentration factors in the course of 
group failure. 

As stated in the previous section, for convenience this 
joint probability is assigned in total to just one of the 
g~,~, involved, other g~,~ set to 1.0. 

2.6. The t reatment  of secondary failure 
Consider the general example shown in Fig. 5. 
Consider the case when fibre 1 fails first, followed by 
fibre 2. Let ki, j and k[j be defined as in 2.5. The 
likelihood contributions are: 

for fibre 1, 

n l  

S ( k l , j X ) k x , j f ( k l , j X )  I~ S(kx , iX)  (12 )  
i:g- j 

where the j th element is the primary failure, 
{ 

and for fibre 2, 

f kl,x S(zi)f(Y) dy (13) 
k2,jx 

where zi = gi (Y). 

I===1 === I=== 

1=== I===1=== 

I I ~ - ~ 1  ~ ~ -  
I = = = l = = = l  

I I I 

<. 

X ~ ~  

~~-I  X 

I 

I I - - I  

- - I  I - I  

~ - ~  I I I 

. . . . . .  I I I 

. . . . . .  I===1===1 

I I I 
.> 
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Fibre I has  n 1 affected e lements  

and  fibre 2 has  n 2 affected elements .  

I X I failure at stress x 
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Figure 3 N e i g h b o u r i n g  fibres wi th  b reaks  occurr ing  at  the same__ 
stress. 

I ~-~ I - resulting secondary failure 

[ I - previously failed element 

Figure 5 A general example of group failure. 
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Various definitions for gi(Y) are possible. The 
"conservative" and simplest approach is to assume 
that nothing is really known about zl except that it 
must be at least k2, i x - see Fig. 4. Then Expression 13 
becomes 

I-~~1 x I~~~1 I I - - I  

I I~~~1 x I~~~1 I - - I  

I I - - I ~ - ~ 1  x I - ~ ~ 1 - - 1  

I I~~~1 • I - - ~ l - - I - - I  

I • [  S(kz , , x ) ]  [S(k2,~x) - S(k'z,jx)] (14) 
ir 

This means that the interactions in group failure are 
reflected solely in the primary failures. 

An alternative, more precise, interpretation of gi(Y) 
is described in the Appendix. For  the data considered 
here the difference made to the overall results is small. 
The above simple approach will be adopted in the 
main body of this paper. 

3. A p p l i c a t i o n s  
3.1. Glass-carbon hybrids 
To test the performance of the dependent bundles 
model, it was applied to some of the data examined 
previously [1]. The material consisted of 1000-ply 
carbon fibre tows embedded as linear arrays in a 
glass-epoxy matrix. The arrays of 7 tows were placed 
at various spacings from 1.5 mm tow centre to tow 
centre, down to tows just touching. A tow was treated 
as a single fibre and using the chain-of-bundles model, 
inferences were made about the load-sharing para- 
meter, F, at different tow spacings. Some difficulty was 
encountered in the case of tows at 1.0 mm spacing, 
where it was found that varying the sub-bundle length 
produced irregular behaviour in the resulting esti- 
mates of F. The sub-bundle length is designed to 
correspond approximately to the PAL, and as this 
length is increased it is expected that the estimate of F 
will increase, i.e. the stress concentrations are lower, 
because they are effective over a longer region. There 
were five samples of length 100 ram, and as they were 
all cut from the same sheet of material, the data were 
combined in order to estimate what were assumed to 
be the common characteristics across all samples. 

The Weibull strength parameters were taken to be 
shape parameter, w, = 30 and unit length character- 
istic stress, ~, = 4.12 GPa, though with a considerable 
degree of uncertainty. This yielded for various choices 
of sub-bundle length, d, the results shown in Table I. 
The unsatisfactory nature of these results was put 
down partly to some unexplained strength variation in 
the material, and partly due to the surprising degree to 
which the choice of d altered the apparent structure of 
the arrays. 

In the dependent bundles model, the choice of unit 
element length, d, is not of any particular physical 

T A B L E  I 

d /? 95% confidence interval 

1.0 80 [57, 122] 
2.0 48 [42, 56] 
2.5 115 [85, 175] 
4.0 67 [58, 78] 

I = l r n m  element  X = pr imary  failure 

- secondary  failure 

Figure 6 Primary failures with one ineffective element on either 
side. 

significance, but should be designed to combine nu- 
merical accuracy with acceptable computation time. It 
is, as already stated, most important that the strength 
funct ionf(x)  for fibres of length d is reliably defined. 

The position of fibre breaks in these data were given 
to the nearest millimetre, so taking this as the value for 
d, a direct comparison could be made with the chain- 
of-bundles results for d = 1.0. The data has to be 
presented in strain or stress order (assuming a con- 
stant fibre modulus) with dependent simultaneous 
failures indicated. Initially no regions of secondary 
failure were indicated so the bundle only consisted of 
elements which had a primary failure or which had 
survived to the maximum stress. Maximizing the de- 
pendent bundles model likelihood with respect to F 
gave exactly the same results as those shown in Table I 
for d = 1.0. The maximized log-likelihood was 
- 913.75. 

Perhaps to cast more light on these data, and to 
demonstrate the wider application of this model, the 
data were amended to allow for an "ineffective" length 
either side of each fibre break, which would be equi- 
valent to a region of secondary failure. It is only 
possible to guess at a suitable value for the ineffective 
length, - 5 or so fibre diameters has been suggested 
by the works of Rosen, and Zweben [7-9]. Here, with 
the "fibres" being tows of approximately 0.3 mm dia- 
meter an ineffective length of 1.5 mm or more would 
be suggested. There were instances where breaks as 
close as 1 ram, were recorded but with recording 
accuracy to the nearest millimetre this could be a 
distance of up to 2 mm. Overall it seems reasonable to 
adopt the strategy of assigning one "element" either 
side of the breaking element to be consequently in- 
effective, as illustrated in Fig. 6. This now allows for 
possible dependence across sub-bundles as well as 
preventing the erroneous linking of independent fail- 
ures which just happen to fall in the same sub-bundle. 

The incidence of simultaneous failure here is small. 
In the total 371 breaks, choice of approach to simul- 
taneous failure will make little difference. Once again 
taking w = 30, estimates of F were calculated for 
various ez in order to achieve the best estimates for F 
and ~ combined (Table II). The results marked ** are 
where the negative log-likelihood is at a minimum, or 
equivalently the log-likelihood at a maximum, and the 
value, when compared with the earlier value of 913.75, 
indicates that this is a more plausible scenario than 
restricting the effect of fibre breaks to just one element. 
However, the information about elements rendered 
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TABLE II 

zt f - log L Conf. int. 

4.12 122 886.55 [90, 179] 
*'4.11 136 885.09 [100, 205] 

4.10 153 885.16 [110, 233] 
4.09 172 886.90 [122, 266] 

ineffective is more vague which may reduce the pre- 
cision of estimation. 

It had been observed that there was a clear differ- 
ence in the strength of these samples compared to 
other experimental data, so it may be informative to 
try to estimate all three parameters, F, ~, and w, 
though the calculation involved is lengthy and it is not 
practical to obtain estimates to a great degree of 
accuracy. However, Table III gives a good idea of the 
region in which the joint estimates lie. Confidence 
regions may be calculated using the large-sample 

TABLE II I  Maximum likelihood estimates of F over a grid of 
(r w) values, with corresponding negative log-likelihood values. The 
best estimate of F for a given w is indicated by *, and the best 
combination of (~, w, F) is shown by ** 

properties of maximum likelihood estimates. If 0 
are the maXimum likelihood estimates of unknown 
parameters 0 then an ~% confidence region is approx- 
imately given by: all 0* such that 

2 (15) 2 log [L(0; x)/L(O* ;x)] < Z(v, ~) 

where p is the dirnensj0n of 0 and Zip, :)is the ~% point 
of the Chi-squared distribution with p degrees of 
freedom. So in Table III the confidence region shown 
is where the log-likelihood value is within 0.5;~3, 0.95) 
of the  optimum value. 

Approximately: F =  115, ff = 24, 6 =  4.18, with 
- log L = 872.45, the latter very significantly lower 

than with w = 30. A smaller w and hence greater 
variability might be expected where some experi- 
mental deviation from the norm is present. 

What is clear is that regardless of the true strength 
parameters, F is of the order 90-140, which reflects 
a small degree of load-sharing, rather less than in the 
case of fibres at 0.5 mm spacing, where the estimated F 
was 15-20. It is also clear that the model works and 
has overcome certain difficulties encountered with the 
chain-of-bundles model. 

W 

30 28 26 24 22 20 

4.09 172 
886.9 

4.10 153 179 
885.2 883.9 

4.11 136" 160 
885.1 880.5 

4.12 122 144 
886.5 878.8 

4.13 129" 154 
878.5 877.3 

4.14 116 ~ 2 l, 
8 7 9 . 6  . . . .  ] 

4.15 5 ] 

4 46 l 
4.18 ] I 

4.19 

4.20 

4.21 

4.22 

4.23 

I 
4.24 

4.25 101 
878.6 

4.26 94* 
878.1 

4.27 87 
878.3 

* The figures in the broken line frame show the confidence region 
(see above). 

3.2. Tungsten-cored silicon carbide fibres 
in resin 

3.2. 1. Experimental procedure 
The fibres were 0.1 mm diameter silicon carbide which 
had been manufactured by chemical vapour depos- 
ition of SiC on to a heated 0.012 mm diameter tung- 
sten wire core. The composite consisted of a linear 
array of 10 parallel fibres set in a flexibilized epoxy 
~'esin matrix. The distance between fibres (centre-to- 
centre) was varied between 2 and 10 fibre diameters i.e. 
0.2-1.0 ram. The length of the fibres was 200 mm. The 
experimental work has been previously reported by 
Clarke and Bader [ 10]. The aim of the experiment was 
to model composite failure phenomena, using single 
fibres of relatively large diameter to make handling 
and construction easier. 

An unusual feature of this composite was the ex- 
tended ineffective region surrounding each fibre break. 
It is thought that shockwaves induced by the release 
of energy at failure result in the observed multiple 
secondary fracturing and debonding from the matrix. 
The length of the affected region was variable, and 
was probably a function of stress level and length of 
surrounding unbroken fibre. Observation through 
crossed polarizers allowed photographs to be taken as 
the sample coupons were loaded, and from these 
photographs the positions of breaks could be recorded 
as well as the lengths of associated regions of second- 
ary failure. Where a photograph contained two or 
more breaks, these had to be regarded as simultaneous 
failures. 

All coupons for a given fibre spacing came from the 
same sheet of material, which was large enough to 
produce 14 parallel coupons but only a sample of 
these were tested. The sample number indicates the 
position of the coupon on the sheet. The spacings 2, 4, 
6, 8, 10 fibre diameters are indicated by the letters 
N, O, P, Q, R. A feature of certain of the test coupons 
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was that at higher stresses, cracks in the resin started 
to appear which almost certainly creates a new load 
redistribution situation, but is of unknown nature. In 
view of this it was decided initially to truncate those 
data sets at the point when the first resin crack 
appeared. Figs 7-11 show schematic diagrams of 
the failure patterns and Table IV gives details of the 
minimum and maximum breaking strains and the 
appearance of cracks. 

12.1 The strength distribution of single fibres 
Since each group of coupons was cut from the same 

sheet, it was to be expected that all N data would have 
similar characteristics, all O data would be similar, 
and so on, but that these characteristics might  differ 
slightly due to experimental variations in laying-up, 
curing, etc. Any major component  of variation would 
be attributable to the different fibre spacings. 

It  is very clear from Table IV that as the fibres are 
placed closer together, i.e. as less resin separates them, 
there is a lowering of the inherent strength of the fibre. 
Early failures point to this conclusion as they cannot 
be affected by any load-sharing at this stage. Sets N, 0 
and P would appear to be similar, and then a clear 
distinction between these sets and R and Q. 
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Figure 8 Patterns of breaks in silicon carbide arrays in resin with fibres at 4 diameter spacing. 

Clarke [11] tested single 200 mm fibres in resin and 
estimated the parameter  w for the Weibull strength 
distribution to be 13.9, and characteristic strain for 
200 mm to be 0.98%. The modulus for this fibre is 
347 G P a  and by weak-link scaling this implies the 
value 4.98 G P a  for the parameter  ~, the characteristic 
stress for length 1 mm. Similar tests on 100 mm and 
50 mm gauge lengths indicated that a Weibull model 
of this order fitted quite well, though the number  of 
observations in each case was small (13 or 14). 

Under weakest-link theory the stress of the first 
failure in 10 fibres length 200 has a Weibull distribu- 
tion, parameters w and ~(200 x 10) ~- i/w). Simple calcu- 
lation shows the R and Q data to be consistent with 
the parameters supplied, but the N, O and P data to be 
clearly inconsistent. It was therefore necessary to in- 
vestigate the true strength distribution before applying 
the dependent bundles model to investigate stress 
concentrations. 

3,2.3. Estimation of unit length strength 
distribution 

The early stages of failure in an array can be con- 
sidered to be largely independent of the load-sharing 
aspect. Where the first failure recorded in an indi- 
vidual fibre is one where neighbouring fibre elements 
have not yet failed, then this can be regarded as an 
independent observation of failure of a fibre of the 
given length. If failure might have resulted from load 
passed from neighbouring fibres then a right-censored 
observation may be recorded. 

Given n fibres of length L, with m initial failures at 
stresses x1, x2, . . .  , x m and n - m right-censored obser- 
vations at stresses Yl, Y2 . . . .  , Y,-m, then the likelihood 
function is of the form 

( I  fL(x,) "[I" SL(yj) (16) 
i=1 j=1 

where fL(.) and SL(. ) are the probability density and 
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Figure 9 Patterns of breaks in silicon carbide arrays in resin with fibres at 4 diameter spacing. 

survivor functions for the strength of fibres length L. 
The asymptotic properties of the maximum likelihood 
estimators in the presence of general independent 
censoring mechanisms are not known exactly, but 

~ Kalbfleisch and Prentice [12] state that certain argu- 
ments imply that the usual results hold under fairly 
mild conditions on the hazard and any covariates. 

T a k i n g  fL(xi)  = w / x i L ( x i / ~ ) W e x p { - L ( x l / ~ ) ~ ' } ;  
SL(yj) = exp{--L(yj/~)w}, then the maximum likeli- 
hood estimate of ~ is given by 

)/1 = /~ x~ + ~ y7 m (iv) 
i j = I  

For given w, the presence of right-censored observa- 
tions will tend to increase the estimate of ~, and reduce 
the precision of estimation. The maximum likelihood 
estimate of w has to be obtained iteratively. Nelson 
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[13] gives a survey of numerical methods appropriate 
to such problems. 

The result of this point estimation for the initial 
failures in the silicon carbide data is shown in Table V, 
with standard errors shown in brackets. Confidence 
regions based on the X 2 approximation are shown in 
Fig. 12. There is a clear distinction between fibres at 
2, 4 and 6 diameter spacings and the more widely 
spaced groups, which appear to conform reasonably 
to the earlier single fibre experiments. The question 
now arises as to whether a Weibull distribution fits 
these data well enough for a corresponding Weibull 
distribution to be assumed in each case for unit length 
strength distribution. 

The usual Weibull probability plot requires log(xi) 
to be plotted against log[ - l o g  P(xi)], where P(x~) is 
the estimated survivor function. Let {x~}, the observed 
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failure stresses be such that x 1 < x2 < x3 , . . . ,  ~- x,. 
P ( x i )  is the observed proportion of observations 
greater than xl = 1 -  q~. The value for q~ may be, 
for example, (i - 1)In,  i / (n + 1), (i - 0.3)/(n + 0.4), 
(i - 3 /8 ) / ( n  + 1/4), (i - 0.44)/(n + 0.12), (i - 1 /2 ) /n .  
Cunnane [14] reviews such estimators and concludes 
that there is little effective difference between the latter 
three, due respectively to Blom [15], Gringorten [16], 

and Hazen [17]. The Hazen formula is, in general, the 
least biased for larger samples, and this has been 
adopted in this work for uncensored samples. 

In the case of progressively right-censored data, the 
function must be modified to take account of the 
censoring. The appropriate product limit estimator 
was introduced by Kaplan and Meier [18], and is 
described by Kalbfleisch and Prentice [12] for 

4 6 0 7  



QZ 

............................................... ===================================================== 

.............. :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

................. ~--~ .............. ============================== ................................... 

........................................ ::::::::::::::::::::::: ..................................... 

.......................... ====================================== ..... ~ .......................... ~------ 

.................................................. :::::::::::::::::::::::::::::::::::::::::::::::::: 

.................. ~ .... ~ .... ======================================================================== 

...... X: ................ ============================================================================ 

.............................................. :::=:::X:::::: ............ :::::::X:::::: .............. 

Q I Z  

......................................... ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

...................................... :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

........................................ ================================================== .......... 

........ :::X:=: ........... :::X::: ..... ============================================================== 

....... ~-:X ........ ~ ................ ================================================================ 

....... ~-----. .... ~ ........................ =========================================================== 

......... ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: .......................... 

Q 1 4  

............................ ~ .................................. ::X=:: ............................... 

. . . . .  =X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  X . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , . . . . . . . . . . . . . . . . . . . . . . .  

........... :X:: ....................... : .... X====: .......................................... X ........ 

~ure 

R7 

.......................................... :::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

........ ::X::: ................. ====::=:X::::== .... X=:-= ..... =:==X===:===:= ....... :==X:=======X=====- 
::X:= ......... :X: ................... :::::::::::::::::::::::::::::::::::::: ....... : ...... =::X::=::::- 

....................................................................... ~ ............................ 

.......... =X: ........................................ ::::::::::::::::::::::::::::::::::::::::::: .... 

...................... ::::::::::::::::::::::::::::::::::::::::::: ................................... 

.......................................... X: ........... ========================= .................... 
=========================================================================== ......................... 

: ..... ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ......... 

R B  

................................... X--:: ........ :::::::::::::::::::::::::::::::::::::::::::::::::::: 

.................................... :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

................................... ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

.................................................................................................... 

.................................. :X ........ :::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

................................. X ..... ::::::::::::::::::::::::::::::::::::::::::: ..... :X::: .... :X:- 

:=:X:: ............ X-::X ...... :::==:::::==::=::::= ..... :::::::::::::::::::::::::::::::: ....... :X ..... 
......................... =========================================================================== 

..................................................... ===X===X= ...................................... 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  X . . . . . .  X:==X . . . . . . . . . .  X==:= . . . .  X==:::  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

l l  Patterns of breaksin silicon carbide arraysin resin with fibres at 8 diameter(Q) spacing and 10 diarneter(R) spacing. 

example. With the estimated survivor function so 
defined, Weibull probability plots were produced for 
each set of initial failures (Fig. 13). The distinction 
between close and wider spacings is still evident, and 
there is no real evidence of a significant departure 
from the Weibull model. The Q and R data conform 
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well, N, O, and P a little less so. Physical explanations 
for this difference will be discussed later. It will be 
assumed for the moment that a Weibull model fits the 
unit length strength in each case, and that the most 
appropriate parameters to use are those given by the 
initial failures. 



Data set Strain No. of breaks 

T A B L E  V 

Min. 1st resin Max. Before Total 
crack cracks 

No. of resin 
cracks 

N8 0.694 0.870 0.919 38 46 3 
N9 0.681 0.809 31 
N10 0.485 0.912 1.012 21 36 5 
N12 0.555 0.852 0.966 16 26 6 

02 0.510 0.899 0.999 42 49 4 
03 0.577 0.953 1.054 32 39 2 
07 0.625 1.173 46 
08 0.603 1.026 1.140 58 66 5 
O10 0.673 0.983 1.132 24 39 2 
O11 0.535 1.091 1.098 53 57 1 
O 13 0.521 0.699 1.003 6 79 18 
O14 0.640 1.031 37 

P1 0.755 1.123 38 
P2 0.645 1.126 62 
P3 0.628 1.019 71 
P5 0.608 0.616 1.045 3 80 1 
P7 0.643 1.057 76 

Q2 0.925 1.050 23 
Q12 0.870 1.083 26 
Q14 0.820 0.955 6 

R7 0.898 1.110 36 
R8 0.956 1.087 31 

25 

Data set No. of No. of ~ & 
uncensored censored 
obs. obs. 

N 28 12 8.6 (0.30) 5.376 (0.12) 
O 69 11 6.1 (0.14) 6.848 (0.14) 
P 45 5 7.9 (0.23) 5.572 (0.11) 
Q" 28 12 14.8 (0.51) 4.885 (0.06) 
R 17 3 16.7 (0.78) 4.875 (0.07) 

a The Q data are from four coupons. One was omitted from later 
analysis because it was thought  suspect due to possible bending, but 
the initial failures were felt to be valid observations. 

3.2.4. Inference about F 
The results obtained on maximizing the dependent 
bundles likelihood function with respect to F, using 
the supplied w and ~ for each fibre spacing are shown 
in Table VI. The results marked ** for the Q and R 
data are those obtained when the earlier strength 
parameter estimates from single fibre tests were used, 
i.e. w = 13.9, ~ = 4.98. It makes little difference which 
are used, but it happens that the likelihood is always 
a little higher with the single fibre estimates, so these 
are used in all :subsequent analyses. 

The results are fairly satisfactory. The estimates o f F  
increase as the fibre spacing increases, and the load- 
sharing relatively small at the 6-diameter spacing. It is 
generally expected that beyond 5 fibre diameters the 
stress transfer should be very small, and certainly at 
8 or 10 diameters we would expect the confidence 
interval for F to stretch to infinity. 

Q_ 
19 

13 

7 

1 

3 

I I l I I I 

_ Single f ibre 
e s t i m a t e s  

P 

T A B L E  IV Max imum and min imum strain (%) 

0 

1 l l I I I 

L, 5 6 7 8 9 10 
o( 

Figure 12 95% confidence regions for the Weibull parameters, 
based on initial failures. 

Various modifications to the model were tried 
aimed at making the load redistribution as realistic as 
possible. A particular feature of these samples is the 
high percentage of the total fibre length rendered 
inoperative by secondary failure. This produces a not 
uncommon situation where surviving fibres have 
a high number of failed neighbours and hence a high 
load concentration on a 1 + r{/F basis. There is little 
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T A B L E  VI 

Data set Fibre spacing w ~ j0 Min. - log L Conf. int 
(diameters) 

N 2 8.6 5.38 12 549.51 [10, 17] 
O 4 6.1 6.85 30 1519.53 [23, 46] 
P 6 7.9 5.57 176 1151.02 [101,371] 
Q 8 14.8 4.89 290 280.78 [81, 4650] 

**Q 13.9 4.98 270 280.70 [76, 4300] 
R 10 16.7 4.88 170 312.76 [68, 890] 

**R 13.9 4.98 270 311.35 [98, 1550] 

Analys is  of in i t ia l  fa i lures  
2 
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Figure 13 Weibull plots for the silicon carbide da ta  at five different 
fibre spacings. (O) N, ([5) O, (V) P, ( x ) Q, ( + ) R. 

evidence to suggest that the effect of failure extends 
much beyond 2 fibres either side, even for the more 
closely spaced fibres, so it seemed appropriate to 
introduce an upper limit on the neighbours considered 
when calculating the stress concentration factors. This 
is inevitably an approximation, but more realistic than 
no limit at all. The limit takes the form of a maximum 
number of neighbours to one side of a fibre and is 
denoted NLS in further results. The values used are 
those suggested by Clarke. Even though there is not 
expected to be load-sharing in the Q and R cases, a 
minimum value for NLS must be included in order to 
make inference about F. The results in Table VII 
show that this improves the likelihood. 

T A B L E  VII  

Data NLS w ~ F Min. - log L Conf. int. 

N 2 8.6 5.38 11 548.64 [9, 15] 
O 2 6.1 6.85 25 1508.38 [18, 38] 
P 1 7.9 5.57 101 1146.81 [58, 212] 
Q 1 13.9 4.98 184 280.31 [52, 3000] 
R 1 13.9 4.98 352 305.89 [89, 6000] 

4610 

4. Extensions 
4.1. Simultaneous failures revisited 
It has usually been assumed that the probability of 
independent simultaneous failure is zero. Allowance 
may be made for this possibility, and will lead to some 
variation in the results. In particular, it becomes pos- 
sible to produce confidence intervals which include 
infinity. The likelihood function, as constructed so far, 
does not permit this where simultaneous failures are 
involved. The assumption that there is an "initiating" 
failure automatically implies dependence of failures, 
i.e. F no t  equal to infinity, hence a finite F is always 
produced. 

The assumption of one "initiating" failure raises 
another issue of particular relevance in the silicon 
carbide data. The interactions between breaks can be 
complicated, stretching over wide distances, depend- 
ent on whether regions of secondary failure overlap, 
positions of previously failed regions, and so on. It is 
perfectly possible that within a group of n failures 
recorded "simultaneously" there are independent sub- 

groups size n~, where ~ ni = n, ni >~ 1. Up until now 
i 

the data have been manually vetted and "fixed" so that 
the right sub-groups are taken, but this is hardly 
satisfactory. 

The algorithm for calculating the probability of a 
group failure is as described in Wolstenholme [17], 
and a remedy for the above problem is simply to allow 
the initiating failure "group" to be of size k, 1 ~< k ~< n. 
This also, as a by-product, allows F to tend to infinity, 
where appropriate, by effectively allowing all n~ = 1. 
This does, however, raise the question of how to get 
the right "measure" for the probabilities. 

Take the simple example of two adjacent elements 
failing simultaneously, ignoring any secondary failure 
for the moment. The likelihood contribution for pro- 
gressive failure is 

prob(fibre 1 fails, then fibre 2) + prob(fibre 2 fails, 
then fibre 1) 

= k l f ( k l x ) d x [ S ( k g x )  - S(k '2x)]  

+ k 2 f ( k 2 x ) d x [ S ( k l x  ) - S ( k l x ) ]  (18) 

but dx is simply a constant of proportion and is, 
therefore, generally omitted. If these failures were 
independent k'~ = k~ and a zero probability would be 
returned, and the likelihood contribution would have 



T A B L E  V I I I  

Data NLS f Min. - log L Conf. int. 

N 2 H 1086.57 [9, 15] 
O 2 24 3073.55 [18, 37] 
P 1 114 2476.75 [62, 275] 
Q 1 201 586.05 [53, oc] 
R 1 420 679.52 [93, oe] 

to be 
ka f  (k lx )dxk  2 f (k2x)dx (19) 

If this possible independent failure is allowed auto- 
matically, the contribution must be the sum of 
Expressions 18 and 19, and must include dx otherwise 
the components contributing to the single likelihood 
term are not of the same measure. In effect this means 
contributing precisely f ( x ) d x  to the likelihood wher- 
everf(x)  arises. The question then is what value to use 
for dx, and in general it should reflect the accuracy of 
measurement of x. In the silicon carbide data the 
strain is calculated to the nearest 0.001%, so stress, x, 
is to the nearest 0.00001 x 347, and so dx is chosen 
to be 0.003 47. The modified results are shown in 
Table VIII. As expected, the effect is small on the 
closer spacings where independent failures are un- 
likely, and introduces more uncertainty about F where 
load sharing is unlikely. (Note that the log-likelihood 
values are no longer comparable with earlier figures 
due to the scaling by dx.) The major advantage of this 
modification is that possible data dependences are 
now all automatically detected. 

4.2. Treatment of resin c racks  
A resin crack may occur where a fibre is already failed 
or damaged or in an as-yet unfailed region (see Fig. 6 
for key) 

A j I - - - i  r I I A 

(i) (ii) 
I--I-~-i---I 

(iii) 

In cases (i) and (ii) no likelihood contribution is appro- 
priate for the element concerned because that will 
have been determined at the time of failure, but it is to 
be assumed that neighbouring elements will be under 
a changed stress concentration as a result. In case (iii), 
the fibre element concerned is probably unloaded, due 
to debonding of the matrix around the crack, so a 
survival probability should be assigned as the likeli- 
hood contribution based on the applied load and 
stress concentration factor as immediately prior to 
resin crack. 

The effect of  the resin crack on neighbouring fibres 
is unknown, but thought to be small. Arbitrarily, it 
was decided to make the contribution to r, the number 
of failed neighbours, increased by 0.5 if a resin crack js 
present. An increase in the possible status types fo r  
elements is required, so 

ti, j = 0 = failed 

= 1 = unfailed 

= 2 = failure and resin crack 

= 3 = resin crack only (20) 

At any given point, it is still only those elements for 
which ti, j = 1 which are "in play". For ti, j = 0, the 
contribution to r is 1, for h,i = 2, the contribution is 
1.5, and 0.5 if t~,j = 3. 

Analysis now follows of  the complete N, O, and P 
data with the one exclusion of data set O13 which 
contained a large number of cracks and probably 
produces a large unknown effect. Table IX demon- 
strates the above modification. The results are to be 
compared with Table VIII, and perhaps are changed 
more than might be expected, in particular where the 
strain range is extended, though remain consistent in 
that the estimated F increases with fibre spacing. 

The question does remain as to whether the single 
fibre strength distribution has been adequately de- 
scribed. As seen in Section 3.2.2 the analysis of initial 
failures produced some unexplained discrepancies in 
the 2, 4, and 6 diameter spaced arrays. 

4.3. Bimodal failure and competing risks 
Two types of failure are known to exist for this fibre, 
those initiated at the surface and those initiated at the 
tungsten core. Clarke examined the fracture surfaces 
of a sample of single fibres to establish the failure 

T A B L E  IX 

Data set No. of arrays No. of failures Max, strain a No. of cracks f Conf. int. 

N pre-crack 4 106 0.908 11 [9, 15] 
total 4 153 1.012 14 22 [16, 34] 

O pre-crack 7 293 1.026 24 [18, 37] 
total 7 347 1.173 14 39 [27, 64] 

P pre-crack 4 247 1.126 114 [62, 275] 
total 5 328 1.126 1 87 [52, 177] 

"This does not take into account any effective increase due to load-sharing. 
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mode, with the following results: 

53 fibres in air, length 10 mm fibres: 

surface 43 strain range 0.3%-0.92% 

core 12 strain range 0.92%-1.12% 

30 fibres, length 50 mm, in ~ 1/2 diameter resin 
coating: 

surface 10 strain range 0.46%-0.96% 
core 20 strain range 0.96%-1.1% 

It would appear that the core-initiated failures occur 
in a very concentrated strain range, and that resin 
coating considerably inhibits surface-initiated failures. 
The 10-diameter spaced arrays (R) have failures 
occurring at 0.898%, 0.926%, 0.952%, 0.956%, 
0.956%, etc. strain, and it seems highly likely that 
these are overwhelmingly core-initiated failures. It is 
possible that at the closer spacings the resin matrix 
has not inhibited the surface flaws to the extent predic- 
ted. Minimum strains of the order 0.5%-0.6% indi- 
cate that these are surface failures, but as strain 
increases, a bimodal failure distribution would seem 
appropriate. Clarke showed that a competing-risks 
model given by 

S ( x )  = S(1)(x)S(Z)(x) (21) 

where S(l~(x), S(2~(x) are, respectively, the Weibull sur- 
vival functions for surface and core-initiated failures, 
fitted the above single fibre data better than a singl~ 
mode Weibull. The assumption is made that these 
different modes of failure are independent. 

A competing-risks distribution of this form may be 
used with both the chain-of-bundles and dependent 
bundles models, as weak-link scaling still applies, i.e. 

SL(x) = &l)(x)St2)(x)  

= [Sil)(x)]L[S(~2)(x)] L (22) 

SO 

[SL(X)] 1/L = S~11)(x)S(12)(x) (23) 

However, a joint estimation over the 5 parameters F, 
w(1), s w(2), cz(2), is neither practical or reliable as 
problems of identifiability arise, as discussed by Basu 
and Klein [20] for example. Such problems are recti- 
fiable, where, for example, the failure type is known 
and then the marginal distribution for each failure 
type may be estimated separately, as in Kalbfleisch 
and Prentice [12]. 

Clarke quotes for the 50 mm resin-coated fibres the 
following Weibull parameters: 

Total 30, w = 6.4, cz = 6.73, from a single mode 
Weibull plot 

Surface 10, w = 4.4, ~ = 10.875, 
Core 20, w = 31.9, a --- 4.205. 

The O data (4-diameter spacing) have the largest 
number of failures contributing to the initial failure 
analysis, and with w = 6.1 and ~z = 6.848 would seem 
rather similar to the above. The values are also com- 
mon to the N, O and P confidence regions in Fig. 12. 
On this basis, a competing risks strength distribution 
with the above parameters was tried, but produced 

461 2 

negative log-likelihood values very significantly 
greater than those given by the single mode Weibull. 

It has been suggested that the single embedded 
fibres and widely spaced fibres in arrays would display 
predominantly core-initiated failures, but the para- 
meters w = 13.9 a n d s  = 4.98 give firstly, a greater 
spread of strength, and secondly, a lower character- 
istic strength at 200 mm than that given by w = 31.9 
and ~ = 4.205. 

5. Conclusion 
Whilst uncertainties may persist with regard to fibre 
strength, the dependent bundles model seems to per- 
form well in estimating load-sharing parameters, pro- 
vided a strength distribution which has the weakest- 
link property approximately applies. The estimated 
single mode Weibull based on the initial failures of 
each fibre in the arrays has in fact consistently given 
optimum likelihood values in the estimation of F, and 
without further precise experimental evidence would 
appear to be a satisfactory procedure. 
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Appendix 
An alternative definition for gi(Y) in 2.6 is now out- 
lined. It will be assumed that as y varies linearly 
between k a , i x  and k'E,jX that the effective stress on 
elements about to be secondary failed varies linearly 
between k2 , i x  and k'2,ix - see Fig. 4. 

For convenience, the fibre number subscript is 
omitted here. 

y k ) x  

k;x 
k j x  

kiX 

Now 

therefore 

where 

y -  k j x  zi - k i x  

k )x  - k ; x  k~x - k , x  

(k'~ - k i ) ( y  - k;x) 
zi = (k~ - k j) 

= Li(y  - k j x )  + k i x  

+ k l x  

k ; -  ki 

k~- k~ 

(A1)  

(A2) 
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Integral 1 (Section 2.6) becomes 

f k}x I~ S(~i(Y - k;x) + k i x ) f ( y ) d y  
kjx  ig:j 

f k',x exp{-- Z [)~/(Y kjx) + kix]W~ -w} 
kjx  i 

x wo~- WyW- 1 dy (A4) 

f l  exp{ ~ [)~i(ux k;x) + k,x]W~ -w} 
J 

x w~z-W(ux) w- l xdu  y = ux 

= w(x/oO w exp{-xW[)~i(u - k;) + ki] TM} 
,3 kj 

x u w- 1 du (A5) 

Fig. A1 is a simple example where a group failure 
is completely surrounded by unfailed nearest 
neighbours. 

Let x be the primary failure stress. In the case when 
fibre 1 is the initiating failure, the joint probability is 

f ( x )  (dx)[S(x)] " - I  IS(x)] ;1 multiplied by the contri- 
bution from fibre 2. The latter term is based on the 
primary failure in fibre 2 occurring somewhere be- 
tween x and kx. Because the overlap region has no 
failed neighbouring elements, the fibre 2 primary fail- 
ure stress y must be the survival stress for the con- 
sequent secondary failures, i.e. in the above analysis z i 
= y, i.e. )q = 1 for the overlap elements, and for the j2 

elements not in the overlap, which are unaffected by 
the failure in 1, zi = k~x, i.e. )~i = 0. So Equation A4 
becomes 

IS(x)] ;2 f l  X IS(y)]"-  l f ( y ) d y  (A6) 

Assuming a Weibull distribution for element strength 
with parameters w and ~, the integral in Expression 
A6 becomes 

f l  x [ - m(y/~) w] dy w/y(y/~) w e xp  

= {exp[ -- m(x/~) TM] - exp[ -- m(kx/oO TM] }/m (A7) 

i.e. this is the probability that a fibre length m fails 
somewhere between stress x and kx, scaled by a factor 

TABLE X 

Data NLS F M i n . - l o g L  ConLint. 

N 2 11 1086.82 [9, 153 
O 2 25 3073.87 [18, 38] 
P 1 114 2476.83 [62, 279] 
Q 1 201 586.05 [53, oo] 
R 1 420 679.52 [93, ~ ]  

m, which is due to the failing element being fixed at 
one of the m units. Such scaling factors are in fact 
relevant to any m element contribution, but nothing is 
lost with regard to inference about parameters of 
interest if the scalars are omitted. 

The integral in Expression A5 has to be evaluated 
numerically, and for that purpose here Gauss- 
Legendre polynomials of order 4 were used [21]. 
Because all the survival probability components 
gradually decrease over the integration, the probabil- 
ities are smaller and hence lead to a smaller log- 
likelihood than before, but the likelihood tends to the 
same limits as before as F tends to zero or infinity. 
This, in general, leads to wider confidence intervals 
for F. 

For the silicon carbide data, the incidence of simul- 
taneous failure is relatively small, and the survival 
probability components are always close to one, so the 
net effect is very small, as demonstrated in Table X. 
The results are to be compared with Table VIII. 

A limited analytic comparison can be made between 
these approaches, and it can be shown that because 
the survivor function terms contributing to the likeli- 
~aood are frequently of the order 0.95-0.98, the 
two approaches produce a likelihood function of 
similar behaviour for values of F greater than 10, 
approximately. 

Other monotonically increasing paths from kx to 
k'x may be described in Fig. 4, but investigations for 
these data have again shown the effects on the results 
to be small. It is to be expected that the technology of 
experimentation will increasingly reduce the incidence 
of failures recorded simultaneously, thus making the 
treatment of this event less of an issue. 

I I I - - I  I I - - I  I I 

I I - - - I - - - I  X I - - - I - - - I  I I 3. 

l ' I - - I - - - I - - - I  X I - - - I - - - I  I 2 

I I - - I - - I  I I - - I  I [ 

~ j l  ~ , .  ~ j 2 - ~  

m = number  of elements overlap 

1" 1, i 2 = number  of secondary failures to the right 

and left of the overlap 

Figure A1 Example of a group failure surrounded by unfailed 
elements in the nearest neighbours. 
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